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Correlation of stress and structure in a simple fluid confined to a pore with furrowed walls
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A Lennard-Joneg12,6 film confined between two furrowed walls was simulated by the grand canonical
ensemble Monte Carlo method. The walls are constructed by gouging triangular grooves in planar substrates
that are structureless on the molecular scale. The furrows are infinitely long in one transverse diygatian
of nanoscopic widthg,) and depth D). The furrows in the two walls are maintained parallel and in register.
The diagonal components of the stress tensof,( a=X,y,z) are computed as functions @ and the
separation between the substrateg @t fixed temperature, chemical potential, ad The T, for the film
between the furrowed walls are strongly shifted from their counterparts for the film betweéreflgplanay
walls. The shifts are rationalized in terms of the structure of the film, which becomes more ordered as the
furrows deepen and the packing of film molecules becomes more restricted in the two dimensions normal to the
y direction. The results demonstrate the profound impact of the coupling between molecular and nanoscopic
scales on the properties of geometrically constrained fluids.

PACS numbg(s): 61.20—p, 64.10+h, 68.35.Rh, 68.45.Gd

I. INTRODUCTION guantities of valuable liquids across a substrate sufffa2e
16]. By imprinting substrates with nanoscopic chemical or
Unless solid surfaces are treated with extreme care, theyeometrical patterns, one can modify the wetting character-
are typically rough, so that an adjacent fluid is exposed to &stics of the underlying solid, thereby creating chemical
geometrically disordered substrate. The effect of such disor<lanes,” say, along which a liquid can be transported from
der on wetting phenomena was studied experimentayd]  one region of the substrate to another, where it may subse-
and theoreticallyf5—-8] by coarse-grained approaches whichquently be analyzed or undergo chemical reactidris16].
average laterally over the height variation of the substrateThus it is conceivable that by imprinting a solid with differ-
Thus an understanding of tiecal microscopic structure of ent types of nanoscopic structures one may fabricate chemi-
fluids filling the grooves and covering the tips of such disor-cal chips or minute chemical factorigs6].
dered substrates is still in its infancy. This dearth of infor-  Eventual realization of the controlled transport of fluids
mation has been alleviated by the development of techniquasn the nanoscale by means of patterned substrates will be
for the fabrication of substrates with well defined geometri-facilitated by fundamental studies of simple models for such
cal structures periodic in one transverse dimension. Ongystems[17]. It will be especially important to understand
method utilizes the self-organization of vapor-deposited mathe phase behavior of such “dimensionally constrained” flu-
terials on crystalline substratg8]. A recent example is the ids. Indeed, a number of theoretical investigations were con-
study by Rauscheet al.[10] of the confinement of organic cerned with “simple” fluids(i.e., fluids comprising spheri-
molecules to one-dimensional trenches constructed by vapeally symmetric moleculgs adsorbed on chemically
deposition of Cagon stepped111) Si surfaces. A sequence patterned substratdd8—24 and in pores with chemically
of annealings produces a pattern of alternating Gatfel CaF  patterned wall{25-32 (also see Refd.33,34 for recent
stripes 1-16 nm wide. Adsorption of 3,10-dipropylperylenereviews. Applying a density-functional technique to the
(DDP), followed by further annealing, results in DDP pref- Lennard-Jones$LJ)(12,6 fluid confined between walls hav-
erentially adsorbed on the CaF stripes. In nature one alsing a superimposed square-wave barrier, Chratedl. [25]
encounters materials that are geometrically and chemicallfound that pore condensation occurs in two stages: liquidlike
ordered on the nanoscale. For instance, minerals of the palpridges form first in the narrow gaps between the tops of the
gorskite and sepiolite group consist of stacks of alternatingpposing barriers, followed by condensation in the wider
tetrahedral and octahedral silicate shéét. gaps, so that the whole pore is eventually filled with liquid.
Such structurally and chemically patterned substrates ar€his behavior is analogous to the two-stage filling process
envisioned to be useful in the field of “microfluidics,” observed by Rcken and Tarazonf26] and Raken et al.
which is concerned with the controlled movement of small[27] in their lattice-ga$26] and density-functiond27] stud-
ies of adsorption of the (12,6 fluid in a pore with a film-
substrate potential varying sinusoidally in one transverse di-
*Electronic address: ddiestlerl@unl.edu rection. Similar observations were made more recently in
TElectronic address: M.Schoen@physik.tu-berlin.de studies of the phase behavior of(L2,6 fluid confined to

1063-651X/2000/6(5)/661513)/$15.00 PRE 62 6615 ©2000 The American Physical Society



6616 D. J. DIESTLER AND M. SCHOEN PRE 62

I 22 = 2Dx/5, + D + 5,/2 I [ = et D+SZ/2| scopig portion of fluid residing in the wedge. A similar ap-
proach was used by Pargt al, who were concerned with
wetting of a single furrow id=2 [41] andd=3 dimensions
[42]. Unlike Refs.[40-42 , the present work treats the fluid
at themolecularscale. Further, in contrast to Ref88] and
[39], here we take the intermolecular potentials to be con-
tinuous functions of the coordinates. We are primarily inter-
ested in the effects on thermophysical properties of coupling
between the nanoscopic scale of the furrows and the molecu-
lar scale of the fluid structure. To attempt to elucidate these,
we employ the GCEMC method to compute diagonal com-
ponents of the stress tensor as functions of substrate separa-
tion s, and dihedral angl® associated with the furrosee

Fig. 1.
The remainder of this paper is organized as follows. In
7= —2Dx/s, — D — sz/QI [ 2, = 2Dx/sc — D — 5,/2 l Sec. Il we describe the model system. Section Ill is devoted

to the derivation of statistical thermodynamic expressions for

FIG. 1. Side view of a slit-pore with furrowed walls. Shadowed Stress-tensor components. In Sec. IV we describe details of
boxes display equations of planes of sides of “central” furrows.the computational methods. We present results in Sec. V,
Subscripts 1 and 2 refer to lower and upper substrates, respectivelgnd conclude with a summary of our main findings in Sec.
VI.

slit pores with chemically striped wall29—-32. By means

of grand canonical ensemble Monte Caf@CEMOC) simu- Il. MODEL

lations [29,3Q,32 and related mean-field lattice-gas models Figure 1 displays a schematic of the model, which con-
[30-32, particular emphasis is put on elucidating the inter-qis1s"of a4 monatomic film constrained between two solid
pla}y petweer_l dlfferent_length scales set by the range of fluidz,gnatomic substrates that occupy the half spaé®<z
fluid interactions, confinemerit.e., width of the slit porg ~ _ and —s,/2>7>—. The surface of each substrate is

and chemical decoration of the substratg®., relative made up of plane segments perpendicular toxtzeplane
widths of the chemical stripes with which the substrates arend so arranged as to create furrows extending me,

endowed. —o to y=o. The substrates are therefore periodic in xhe

) In this paper we are concerned W.ith the properties of fIUiddirection, having a period o, . They are also assumed to be
films constrained by walls possessing purely structural pat|'nfinite in thex direction. The dihedral angl@ between the

terns(as dlstlnct_from chemical patterns, which involve m_oreSloping sides of a furrow is given in terms of the deptiof
than one chemical specjesn the nanoscale. In an earlier the furrow by

2

work [35] we employed the GCEMC method to simulate the
LJ(12,6 fluid between face-centered-cukit00) walls, one S,
smooth on the atomic scale and the other scored with square 0=2 arctaré ﬁ) D
grooves several atomic diameters wide. When the walls are
in the appropriate lateral alignment, the film consists of fluid\ye assume the furrows in the two substrates remain parallel
and solid portions in thermodynamic equilibriuffuid-filled in they direction and in register in the direction.
grooves alternating with solid stripsEpitaxial freezing is We take the potential energy to be expressible as a sum of
induced by the templates of the strips between the grooves,j(12, interatomic potentials
an effect first described in Ref§36] and [37]. In the
grooves, however, the field due to the template is so weak a\2 [g\6
that the film remains fluid there. u(ry=4e (?) —(?)

The current paper treats a(lL2,6 fluid confined by sub-
strates that are structurally striped on the nanoscale, byetween pairs of fluid molecules, whereis the distance
smooth on thénfinitesimalscale. The substrate can be imag- between the pair_ For S|mp||c|ty, we assume all pairs are
ined to be constructed by gouging triangular grooes-  characterized by the same attractive well deptnd effec-
rows) in an infinitesimally smooth planar surfa¢see Fig. tive diameters. To avoid complications that would attend
D). In an earlier GCEMC study Schoen and Dietri@8]  specification of the detailed molecular structure of the sub-
examined the entropy-driven packing of hard spheres in thgtrate, we employ a mean-field approximation for the film-
groove of a furrowed hard substrate. It was shown that undegypstrate potential energy, which is derived by averaging the
favorable conditions the furrow can induce a solidlike order(original) fluid-substrate interactions over the positions of the
of fourfold in-plane symmetry in the hard-sphere flige  gypstrate atoms. Thus the mean-field potential en@fglof
Fig. 6(@) in Ref. [38]]. This observation was verified inde- 5 fluid molecule due to thepper substrate(designated by
pendently by Hendersoat al. [39] in a density-functional  the superscript Ris given by
calculation based on the Evans-Tarazona functional. More
recently Rejmeet al.[40] studied the filling of a single fur- ®Pl(x,2)= ol (2) + ¢l?)(x,2), 3)
row (wedge by liquid. These authors employed an effective
interface model, and focused on the meniscus @hacro- where
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o 0 o] S .
@52](2):Psf dX’f dy’J' dz'u(|r—r'}), x”=x—§x(x’z’+2m—1),
- —o s,/2+D
. (4) .
© s,/2+D P P 4
PPl (x.2)=ps 2 dy’f dz 7'=2-D7' -3, (9)
m=-—-« J—-x s,/2
: _1- . Sy~~~
X{fo[Z +D(2m-1) SZ/Z]IZDdx’u(|r—r'|) X"=X—§X(x’z’—z’+2m+1)
sy(2m—1)/2
I e dxu(lr—r'|) in terms of the dimensionless variablesandz’.
s [2'~D(2m+1)—s,/2]/2D : Since the total mean-field potential energy=d!!

+ @[] is periodic inx, ® need be calculated in only one
and ps is the density of substrate atoms. The positions ofperiod, say the “central” one-s,/2<x<s,/2 (see Fig. 1L
fluid molecules and substrate atoms arand r’, respec- Symmetry also dictates the following relation®!*(x,z)
tively. The contributionse(?! and ¢! correspond to aver- =®?(x,—2) and®d(x,2)=®M(—x,2), wherek=1 and
ages over the “hills” between the furrows and over the re-2. From these latter we conclude tllatat any point §,z) in
mainder of the substrate, respectively. Similar expressionthe central period is given by®(x,z)=®P(|x|,|z])
obtain for the potentiaf!*! of a fluid molecule due to the +®P2(|x],—|z]). We exploit this symmetry to simplify the
lower substratgdenoted by superscript.1 computation of the fluid-substrate potential energy, as de-

Taking the origin at the fluid molecule and transforming tailed in Sec. IV.
to cylindrical coordinates, we can carry out the double inte-
gral in the first of Eqs(4) to obtain Ill. THERMOPHYSICAL PROPERTIES

A. Thermodynamics

2 o 9 o 3
E( S,/2+D— z) N ( S,/2+D— z) : From a thermodynamic perspective we take sfistento
(5) consist of the finite portion of the fluid bounded by the sub-
strate surfaces and Hymaginary faces that lie in the pairs
The definite integral oy’ in the second of Eqg4) can also  of planesx= *s,/2 andy= *s,/2. The thermodynamic state

be done explicitly. The result is can be specified by giving the absolute temperatliye
. chemical potentiak, and spatial dimensiorsg, s, , ands,.
2] _ 3mepso /24D In terms of these variables reversible transformations of the
®1 (X,Z)—T e L i dz system can be expressed in differential form as
{ 57/ +D(2m-1)—s,2]/2D dQ=—-8dT-Ndu+F,dL+F,ds +F.,ds,, (10
J dX! (p(XI!,ZH)
sx(2m—1)/2 where () is the grand potentialS is the entropyN is the

number of film molecules, and is an ancillary distance

sy(2m+1)/2 . .
+j dx’ ¢(x",2")| (6) whose rde is explained presently. The last three terms of Eq.
—s,[2' —D(2m+1)—s,/2]/2D (10) represent the mechanical work done by the system
against forces applied to the faces. According to the assump-
where tions thus far introduced, no shear stresses act on the system.
” , 112 g2 |52 The normal stres$,, is given by
Y(X",2") == - ( ) , (D
32 n2 "2 "2 "2 .
Xtz Xtz F,=T,58,= Iim g) : (11)
L—s,/2 Z TvM’L’Sy

X"=x—x", andz’=z—2z'. Likewise, we can obtain the an-
tiderivative of with respect toc” in closed form, but since wheres,s, is the cross-sectional area of the system in the

the function ofz’ that results from evaluating it at the limits x-y plane. Likewise the stress on the face pointing in yhe
is formidably complex, we instead choose to calculate thelirection is

double integral in Eq(6) numerically(see Sec. Y. For this

urpose it is convenient to recasf’! in dimensionless form . 0
o aef Fy=T,yS(s,+ D)= lim (— . (12
L2\ IS/ 1 L s,
3mepsoSD [t ~n [ [t~ - ;
<P[12](X,Z)= Ps0Sx D d7 f dx’ ¢(x",2") where _sx(sz+ D) is the_ area of the face_. Th_e th_eore_t|cal
4 m=—o Jo 0 analysis of the expansion of the system in xhéirection is

complicated by the fact that the dimension of the system at
, ®) which we wish to computd,, coincides with one of the

variables §,) that determines the dihedral angld see Eq.

(1)]. To circumvent this problem, we introduce the auxiliary
where distancel (see Fig. 1. Thus we suppose that the face point-

1. .
+f dx’ (x",z2")
0
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ing in the x direction lies in the planx=L, where Gs<L
<s,/2. Then we can writd,, as

Fx=TxSyS,= lim

&) a2
L~>SX/2 (9L T’lu’sy 'Sz.

B. Statistical mechanics

D. J. DIESTLER AND M. SCHOEN
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X

Sy AZ' (X)) 1/
X‘+§>Z‘Az<xi>>+V<i_El

> (19

where AZz'(x;)/Az(x;) is given by Eqg. (A7), and V
=s,S,s,. The angular brackets in EL9) signify the grand

s
(xi+§X

AZ'(X;)
Az(x;)

er 901,
X 0z; :

The connection between macroscopic and molecular 1eVeanonical ensemble average, which is expressed for a generic

els is through the relationsh{@3]

Q=—-kgTInZE, (149
where the grand partition function is
_ < exp uN/kgT)
== ——Zy.- 15
2w (15)

In Eq. (15), kg is Boltzmann’s constant, amtl is the thermal

de Broglie wavelength. The configuration integral is given

by

N

zy=11

=1

Z5(Xj)
v |z et ~UrkoT),

L sy/2
d X; f d
—S,/2 —sy/2 Z1(Xj)

(16)
where the configurational energy is
1 N N N

UZEE 2 u(r)+ 2 (x;,2). 17
i=1 j=1#i i=1

Because the substrate surfaces are not parallel witkx-the
plane, the limits on the integrations over theoordinates in
the expression fary depend on the coordinatesz; (x) and

dynamical quantityG by
1

©=z 3

= N=0

exp uN/kgT)
NIASN

1

L/Ndr'\‘ exd —U/kgT]G(rN,N)

=NZO f AN NN)G(r YN, (20)

v

where

1
feq(r™,N) == exp(BN— InN!)exq —U(r")/kgT]
(21)

is the grand canonical ensemble probability density, and

yn
——=—1In

B kT

22
T (22)

is a dimensionless parameter which we introduce here for
later conveniencésee Sec. IV A Note that in the second
line of Eq. (20) the integration is over reduced coordinates
r'=r/V. In Eq. (22), stxsy(sz+ D) is the volume of the
system(pore. In Eq. (19) the quantitiesiol¥/da; (n=0,1,
k=1,2, anda=x,z) are just the negatives of the compo-

Z(x) are the equations of the planes of the lower and uppefients of the force$d (x;,z) exerted by the substrates on

substrate surfaces, respectivébge Fig. 1

fluid moleculei. Explicit expressions for these are presented

From Egs.(11)—(15) we deduce the statistical thermody- jn Appendix B.
namic formula for the generic diagonal Component of the By manipu|ations para"e“ng those used to reach (Eq)

stress tensor

>

N=0

Toum - p

EA

eX[X/.LN/kBT) ( 0ZN

NIASN 0Sa> ’ (18
where s, stands for the dimension of the system in e
direction, andA, for the area of the face pointing in the
direction. The evaluation ofZy/ds,, is detailed in Appendix
A.

Now substituting into Eq(18) the successive intermediate
expressions in Eqs(A5), (A6), (A8), (A9), (A10), and
(A11), we obtain

S
3

u,(rij)[ 2

AZ'(x;)
Az(xi)

AZ'(x))
Az(x;) 2

Xij+zij

=

we find
1 (Y]
™= Als+D) <N>kBT‘E<§,§# BT
(23)
and
kT 1
A, <21 AZ(Xi)>
1 N u’(ri))zij | Zi—24(X;)
- 2A2<|21 j:Elq&i rij Az(x)
Zj— 7:(X)) 1/ o 902 z—2,(x)
T Azx) >+A_<El 7z Azx)
I 7—7,(x;)
* az;  Az(x;) > 24

whereA,=s,s, andz,, z,, andAz are defined in Fig. 1 and
Appendix A, respectively.
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An alternative, much simpler, formula fdr,,, which can be s\ AZ'(x) 1 & exp(uN/kgT)UN
derived by directly differentiatingy, given in Eq.(16) (see <2 (Xi+ EX) A i >:E —
Ref.[29] for detalils, is =1 z(x) | = R0 NIA

X ! % d

N (2] 1] N = _dry
T = L 2 e _aCI) =i 2 [f[l]_f[Zl] V k=1 JWN
zz ZAZ i=1 0z 0z; 2AZ i=1 z z '
(25 S| A2/ (%)
X | X+ 2 AZ(Xk) . (29)

whereft¥ = fld+ {1 is the force on fluid moleculedue to o _
substratek. Equation(25) expresses the intuitive notion that BY means of EqsiA2) and (A7) the cpnflguratlon integral in
the normal stress is just the mean force per unit area exertdefl- (29 can be evaluated explicitly:

on the fluid by the substrate. J sX)Az’(xk)
. drg
VN
C. Limits D=0 and e=0

2 Az(x)
In the limit D=0 (9=180°), when the substrates are Substitution of Eq(30) into Eq.(29) yields
planar, the following relations holdz,= —s,/2, z,=s,/2,

X+ —Ds;sy. (30

N '
Az=s,, Az'=0, andde;/dx=0. Substituting these limit- D i > AZ'(x)\ _ Dss(N) (31)
ing relations into the expressions for the diagonal compo- =\ 2) Az(xy) Vi '
nents of the stress tensor given in E¢K9), (23), and(24),
we obtain Finally, combining Eqs(28) and (31), we reach Eq(27),
N , 5 with a=x. The demonstration fof,, proceeds along a simi-
__<N>kBT+i DI u'(rij) aj aexy larfine.
“o \ PAVA N = i rij ' '
(26) IV. COMPUTATIONAL METHODS
(NYkeT 1 /& X u'(r)z A. Monte Carlo simulations in the grand canonical ensemble
277y Tav .21 J-ZEM i To evaluate the ensemble averages in the formulas for

\ T .., We employ the GCEMC algorithm originally proposed
1 (2] s, by Adams[44] (also see Ref{45]), which consists of two
BRY; Z’l f izl z— 5 consecutive sequences. In the first of these we select a fluid
molecule, say i, from a given configuration rr’:']k
> ={rim,fom, - - - ,rNkm} containing N, molecules, and dis-

2 place it at random according to

+f[z1](Xi,Zi)(Zi+—

. . _ in=Tim+ 8(1-28), (32
These limiting formulas agree exactly with expressions pre-
viously derived for a slit—pore with planar walisee Egs. wherer;,, andr;, are the molecule’s old and new positions,
(26)—(32) in Ref.[29] for the special case;,= €rs= €;y). respectively1=(1,1,1), & is half the side length of a small
Another limiting case is the one wheee=0 correspond- cube centered on,,, and£ is a vector whose three compo-
ing to the ideal-gas limit, in which intermolecular interac- nents ardpseud9 random numbers distributed uniformly on
tions become negligible anit,,, should reduce to the interval[0,1]. The probability with which the displace-
ment is realized is governed U)éq(l’N,N) defined in Eg.
(NYkgT (20), and must satisfy thprinciple of detailed balanceThe
= — e B , (27) latter is obeyed if the displacement is carried out as a Mar-
\ kov procesqd45]. The displacement must then be accepted
with probability

wherea=x,y,z. AlthoughT,, given by Eq.(23) manifestly
satisfies Eq(27), it is hardly clear thaT,, andT,,do so. We

therefore investigate the particular cage=x. In the limit — ey reeNKy . . )
e=0, U=0, and the expression fdF,, given in Eq.(19) where AUpm=U(r,") ~U(ry) is the change in configura

becomes tional energy associated with the process—r;,. During a
run the magnitude ob is adjusted such that roughly 40—
60 % of all attempted displacements are accepted. The dis-
placement sequence concludes onceNgllmolecules have

. (28 been considered consecutively. Sildgremains fixed, this
part of the GCEMC algorithm is equivalent to the classical
Metropolis algorithm describing stochastic diffusion in con-

Using Eq.(20), we can write figuration spac§46] (see Ref[47] for a historically interest-

II;=min[1,exg —AU,,/kgT)], (33

Sx
Xi+E

keT "
TXXZ‘T[<N>+<;1 Az(x)

Az'(xi>>




6620 D. J. DIESTLER AND M. SCHOEN PRE 62

ing discussion between M. N. Rosenbluth and J. G. Kirk-somewhat cumbrous expressions for correcti@s, we re-
wood concerning the correct implementation of theplace the L{12,6 potential[see Eq.(2)] in Eq. (17) by its
Metropolis algorithn. shifted-force counterpaf60]
In the second sequence of the GCEMC algorithm an at-

tempt is made to alter the number of fluid molecules accord- (1) —ug(r)
ing to N,=N,,=1. The principle of detailed balances
again satisfied by carrying out the “creation” or “destruc- u(r)—u(re)+du(r)/drf— (re—r), r=re
tion” of a fluid molecule as a Markov process. Attempts to =
create and destroy fluid molecules are realized with equal
probability. It can then be showd5] that the change in the (36)
number of fluid molecules must be accepted with probability

. which vanishes identically for all intermolecular distances
[Ty=min[1,exdr.)], (34 exceeding the cutoff,=2.50. The shifted-force potential is

explicitly short range, and consequently does not require

0, r>r.

where long-range corrections during the creation-destruction se-
f (an N,) quence of the GCEMC algorithm. Hoyvever, we note in pass-
exp(r.) = edt’n 7N ' ing that_the phase diagram of a_flwd, in which intermolecular
- feq(r:maNm) interactions are governed loy;, ineluctably depends on. .
r,=B—InN,— LkJ_n_;_n (35) B. Evaluation of fluid-substrate interaction potential

B According to the discussion at the end of Sec. Il, we com-
pute ¢!?! numerically at the nodes of a rectangular grid prior

r_=—-B+InN,+ Ul” to the GCEMC run, and evaluate by interpolation during
™ kgT the run. Following the constraints of symmetry summarized

_ _ below Eq.(9), we evaluatep!?! on a grid that covers the

where “+” and “ —" refer to creation and destruction, re-

i N N upper right quadrant of the-z plane defined by the set of
spectively, andAU,,=U(r,")—U(r,") because old and points{(x,z)|0<x<s,/2,0<z<s,/2+ D} where, of course,
new (trial) configurations differ by one molecule. The prob- ¢l?l= if for a givenx, z=z,(x) (see Fig. 1 The double
ability of creation and destruction attempts is dictated solelyintegral in Eq.(8) is accomplished by repeated application of
by the thermodynamic state of the fluid, and cannot be adSimpson’s rule. A mesh size of 1.28.0 2¢ in both dimen-
justed as for displacement attempts. Employing scaledsions is fine enough to yielg!?! with a precision of about
particle theory, Allen determined the threshold Idf, at  0.01%. Tests also reveal that terms in the sum in(Bgare
which the inefficiency of creation-destruction attemptsnegligible for|m|=2.

causes the GCEMC algorithm to break doj48]. F(zrsthe During the GCEMC runp!?(x; ,z), corresponding to the
present thermodynamic stafsee beloy; about 5<10™° of  instantaneous positiorx(,z;) of fluid moleculei, is found

all creation-destruction attempts are successful according trough bilinear interpolation. For this purpose we introduce
Eq. (34), which exceeds the minimum value of T0given  dimensionless coordinates

by Allen [48] by more than an order of magnitude. The
creation-destruction sequence is repeatti times, where % —1if2 5 116 1
Ni" is the number of fluid molecules present in the system Xi={[2x~(2n—1)] X}Z_ﬁx’
when the creation-destruction sequence begins. The combi- (37)
nation of N displacements andl,"" creation-destruction at- B 1
tempts constitutes a “Monte Carlo cycle.” zi={[2z—(2n,— 1)]51}5,
In the implementation of this algorithm a subtle compli- z
cation arises because one is generally restricted to rather
small systems on account of limited storage and computa¥here {n,|n,e N,n,<a;/8,<n,+1} (a=x,z) and &
tional speed. This implies that long-range intermolecular in-= .= 1.25< 10~ 0 is the mesh size. Defining weighting co-
teractions such as the (12,6 must be neglected during the €fficients
simulation. Disregarding these interactions poses no problem
to the calculation ofAU,, during the displacement se- w__=(1-%)(1-2),
guence, since their contribution is small and cancels nearly
exactly. However, this is not so for the creation-destruction

sequence because of the shift in densityzof/V between W_ = (1=x)(1+2),

old and new trial configurations. Nevertheless, the contribu- (38)
tion of long-range interactions tAU,,, is still small. Thus Wi _=(1+%)(1-z),

one may resort to a mean-field treatment and estimate the

long-range correction ta&AU,,, analytically [36]. Unfortu- ~ ~

nately, this approximation breaks down near the critical point Wy =(14x)(1+2),

of the confined fluid, where a mean-field treatment becomes

inadequaté49]. To avoid these complications as well as thewe can express the interpolated valuegdt! as
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TABLE I. Normal component of the stress tensgy, from ex-  several fixed values of. For the case&d=180°, T,, versus
pressions given in Eq$24) and (25) for various furrow depth® s, is the normal-stress curve for the planar, smooth-wall slit

and substrate separatioss. pore; T,, andT,, are related to the interfacial tensignby
y=[(Txx+Tyy)/2=T,,]. The oscillations correspond to the
D s, T, [Eq. (24)] T,.[Eq. (295)] abrupt appearance of successive layers in the filra,ads-

creased45]. For the particular thermodynamic state under

0.00 220 —0.232 0.234 consideration(see abovg at s,=2.0 the film consists of a

0.00 240 —2479 —2515 single layer parallel to the substrate surfaces. The layer is

0.00 4.00 —0.659 —0.657 homogeneous and isotropic in transverse directiors the

0.00 4.60 —1.146 —1.163 x andy directions parallel with the substrate surfacaad

0.35 2.20 —1.760 -1771 inhomogeneous in the normal directi@re., thez direction.

0.35 2.40 —-1.513 —1.535 The film molecules are close packed in the layer, which fits

0.35 3.40 —1.155 —1.144 snugly between the substrates. Indeed the film is under a

1.07 2.20 —1.258 —1.274 slight tension in thez direction, that isT,,>0 and an out-

1.07 2.60 —1.096 —1.082 ward forceT,s,s, must be applied to the substrates in order

1.07 300 ~1.002 ~0.993 to maintain the separation fixed af=2.0. Now, ass, in-

1.07 5.00 —0.986 —0.980 creases from 2.0, more fluid molecules enter the pore and

336 295 1059 1048 disrupt the close packing of the monolayer. Consequently,
' ' ' ' T,, drops precipitously, reaching a minimum abayt 2.5

3.36 2.75 —0.984 —0.969 zz

[see Figs. &) and 2d)]. As s, continues to increase, how-
ever, the original monolayer begins to split, resulting even-
tually in two close-packed layers a&,=3.0, whereT,,
reaches a relative maximum. The completion of the new
layer, with the attendant increase in or@eith respect to the
intermediate state of the partially formed layedrives the

1
90[2](Xi 1Zj)= Z[W— —(D[z][nxéx \N;3,]

+w_ PPI[N5,,(n,+1)8,] system toward a state of tensigwith respect to the bulk
rw, @R[, +1)8,.n,6 phase in the z direction. This cycle repeats &s increases
N [t 1)ocnzo] from 3.0 to 4.0, where three layers of fluid are present under
+w, , ®PI(n+1)68,,(n,+1)8,]]. tension(relative to the bulk phagén the z direction.
(39) We now adapt the above ideas relating structure and ten-

sion in order to rationalize the dependencé gf, on D with
s, fixed, which is shown in Fig. 3. We conside, first. At

Applying the bilinear interpolation method to the limiting H_q o (§=180°), which corresponds to the planar limit,

case of planar substratéshere ¢?(x,z) can be evaluated ihe yajyes ofl,, are just the relative maxima af=2.0, 3.0,

by the explicit expression fop(! in Eq. (5)], we verified  ang 4.0, respectiveljsee Figs. &) and 2d)], where one-,
that the interpolated value afl*)(x,2) at any point in the  two-, and three-layer films are present. We focus now on the
x-z plane deviates by less than 0.1% from the value calcumonolayer fluid. AsD increases, that is as the furrow deep-

lated from Eq.(5). ens, the original monolayer is disrupted, which results in a
sharp decline inT,,, analogous to that observed as the dis-
V. RESULTS AND DISCUSSION tance s, between the planar substrates increases fegm

=2.0, as described above. However, whrincreases, the
In the remainder of this paper we express all quantities ireffective distancel between the substrate surfaces increases
the customary dimensionle§se., “reduced”) units. Thatis, nonuniformly from the edges of the furrow at *+s,/2 to
length, energy, stress, and temperature are expressed in unit@ center ak=0. That is, at the edgak=s,, whereas at
of o, €, el andelkg, respectively. For all thermody- the centerd,=s,+2D. Hence the degree of disorder varies
namic states of the system considerdd=1.0 and u=  over the furrow, being least at the edges and greatest near the
—9.0; the corresponding bulk density and pressurergre middle.
=0.709 andP,=0.979, respectively. The width of the fur- At §=170°, T,, has reached &elative minimum. From
row is fixed ats,=8.0; the length of the furrow is chosen in Eq. (1) we computeD =0.35, so thatl,=2.7. Judging from
the range 8.&s,<40.0. The cutoff radius is set to,  the above discussion of the planar limit, one might surmise
=2.5. The depth of the furro (or equivalently the dihe- that the original monolayer should be splitting into two lay-
dral angled) and the separatios, were varied more or less ers over the central region of the furrow. Another factor
systematically as described below. The results are basesbmes into play, however, to enhance the ordering of the
upon runs of 5 10* Monte Carlo cycles; each run is started film near the vertex of the furrow: the substrate surfaces now
from a random configuration of fluid molecules. intersect in a lindvertex to create a “corner” with respect
To demonstrate the reliability of the GCEMC procedure,to which atoms can order themselves in the direction parallel
we compare the components Bf, computed from the dis- with the substrate surface and normal to thexis. As a
similar expressions given in Eq&4) and (25). The entries measure of the order of the fluid we take the local density,
in Table | for a number of arbitrarily selected cases agree tavhich can be expressed
better than 2%, supporting the internal consistency of the
simulations (N(x,2))
. ’ . (Xl ):—7 (40)
Figure 2 displays plots of ,, (¢=X,Y,z) versuss, for AXAzs,
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FIG. 2. Diagonal componentd (., a=X,Yy,z) of the stress tensor as functions of separasiofor several furrow depthB. Panelqa),
(b), and(c): (M), D=0.00 (6=180°); (O), D=1.07 (9=150°); (@), D=3.36 (9=100°). Paneld): (M), D=0.00 (§=180°); (O),
D=0.35 (#=170°). The solid horizontal line representd,= —0.979.

where(N(x,z)) stands for the ensemble-average number ofespect to the limiting curve for the planar substrate. This can
fluid molecules that lie within a square prism of dimensionsbe explained crudely as follows. The segments of the film
AxXAzXs, centered on the node of the grid at the pointthat span the pore in thedirection consist of different num-
(x,2). The plot ofp in Fig. 4(b) indicates that the monolayer bers of layers in the process of forming. Roughly speaking,
film has indeed bifurcated into quite sharp layers near theéhe normal stress can be expressed as a weighted average
center of the pore. These merge into a single layer near thever the segments of the limiting stress for planar substrates
edges. As a result the normal stress drops to an intermediage a separation that corresponds to the distance between the
value between the limitingplana) values of 0.25 ats,  sloping substrate surfaces for that segmeri. i$ not too far
=2.0 and—1.8 ats,=2.7. from 0.0 (#=180°), then the average involves only a few
As 6 continues to decrease, the furrow becomes deepgoints on the limiting stress curve, which are separated from
and the corner sharper. The consequence is an increasingiyie another by fixed distances sischanges. Thus, we ex-
ordered fluid in both transverse dimensions. The furrow capect the average to have the same period as the limiting
be viewed as being spanned in theirection by segments of curve, but also to be dampened through partial cancellation.
fluid containing integral numbers of layers, alternating withThe plots in Fig. 2d) bear this out. AD becomes larger, the
segments “in transit”(that is, segments in which new layers average involves a larger number of segments and a corre-
are coming into being Therefore, T,, oscillates asD in-  spondingly larger number of points on the limiting curve. A
creases to about 1.669€ 135°). For largerD, the broad sufficiently deep furrow, sayD =3.37 (#~100°) [see Fig.
midsection of the pore is dominated by largesymptoti¢  2(c)], results in essentially complete cancellation.
separations, and hendg, is near the bulk stress. The struc-  We turn now to an examination of the dependenc#& gf
ture of T,, versusD for the cases,=3.0 and 4.0see Fig. onD for fixeds,. For the cass,=2.0, Fig. 3a) shows that
3(c)] may be similarly rationalized. As expected, the oscilla-the film tends more or less linearly with increasibgoward
tions become muted as increases and,, approaches the a state of tension in thedirection. The plots of local density
asymptotic(larges,) value more rapidly. in Fig. 4 suggest that the film becomes more ordered in both
The dependence of,, on s, for fixed D is shown in the x andz directions asD increases. Further evidence that
greater detail in Fig. @). The normal stress curve for the order in the film increases as the furrow deepens is provided
furrowed substrate appears to be shifted and dampened willy a plot of mean density
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tensor as functions of furrow depfh for several substrate separa-
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0 25(X)
f dx f dzp(Xx,z)
—8,/2 Z1(X)

s,/2 Z5(x)
+ f dx j dzp(X,z)
0

73(x)

1
n=——
Ds,+s,s,

v (41)

as a function oD (Fig. 5. Thatn increases monotonically
with D indicates that the efficiency of packing of fluid mol-
ecules increases accordingly. Further, as one would expect,
both the amount of increase mand rate of increase of
(i.e.,dn/dD) are smaller the greatsy is. Whens,=2.0 the

film is forced to be monolayer near the edges. As the furrow
deepens and the corner sharpens, the order in the layer near-
est the substrate surfagee., the contact lay@rincreases in

the direction parallel with the substrate surface and with the
x-z plane. This increase in order is conferred on xtdirec-

tion through a “template effect.” That is, the contact layer
provides a template to which the next layer conforms. This
epitaxial effect persists for a few layers. Thus the film pro-
ceeds toward a condition of higher tensigelative to the
bulk phasg in the x direction, for the same reason that the
film between planar substrates tends to a state of higher ten-
sion in thez direction as a new layer is completed and the
order increases to a “local” maximum. Likewise, with in-
creasings, the effect just described is mut¢see Fig. 8)].

As s, increases, the fraction of the directed face that is
covered by the disordered asymptotiarge s,) region in-
creases.

The dependence ofy, on D at fixed s, is markedly
weaker than that ofr,, or T,, on D at fixeds, [see Fig.
3(b)]. The reason is that,, is associated with expansion
(compressionin they direction, in which the degree of order
does not change d3 or s, is altered. Nevertheles3,, de-
pends on structural variations of the fluid in tlkeand z
directions(i.e., variations parallel with the cross section of
the porg. The caseD=0.0 illustrates this clearly. As the
plots in Fig. 2b) show, T, oscillates with increasing,, in
correspondence with the appearance of successive layers of
fluid, as described in connection with tsg dependence of
T,,. The variations off;, with s, are strongest in the vicin-
ity of D=0.0. WhenD is sufficiently small that the cross
section of the pore is dominated by the asympt@acges,)
regime, thenT,, approaches the bulk stress. Again, the
largers, is, the weaker is the dependenceTgf, on D [Fig.

2(b)].

VI. CONCLUSIONS

The results presented in Sec. V demonstrate that the diag-
onal components of the stress tenfice., the normal stress
T,, and the interfacial tensiom,, andT,,) for a LX12,6-
type fluid (see Sec. IV A constrained between smooth fur-
rowed walls are strongly altered from their counterparts for
the fluid between flafplana) smooth walls. Note that by
“smooth” we mean that the walls lack structure on the mo-
lecular scale, which is a reasonable approximation in case
fluid molecules are much larger than substrate atoms. The
furrowed walls, however, possess nanoscopic structure in the
normal(z) direction and in one transver$g) direction. The
principal focus of our investigation is the effect of coupling
between molecular and nanoscopic structures on the thermo-
physical properties of the film, and the smooth-wall approxi-
mation captures the effect.

The essential reason for the disparity between stress com-
ponents of the film between furrowed and flat walls is the
increase of order engendered by the confinement of the fluid
molecules to the furrows, which constrain the packing of
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D=000 (6=180° (a) D=107 (§=150°) (c)

p(x,2)
p(x,2)

D=035 (§=170° (b) D=187 (§=130° C)

p(%,2)

FIG. 4. Local densityp(x,z) for several furrow depthga) D=0.00 (#=180°), (b) D=0.35 (#=170°), (c) D=1.07 (#=150°), (d)
D=1.87 (9=130°), and(e) D=4.00 (§=90°).

molecules in two dimensions, rather than in just one dimen- . . . . .
sion, as for flat walls. A fluid molecule between smooth pla- 0.6 O o o 1
nar walls is subject to an “external” potential field that de- o o © . °

pends only on the distancg) of the molecule from the maiy ®® ooe® o o ©
substrates. As a result, the film orders itself in layers parallel . c0®©

with the walls, in a fashion analogous to the ordering of 0.5 'o.o. oooooo

(spherical molecules in the homogeneous fluid in spherical o©

shells about a reference molecule. That is, the fluid betweer= &

flat walls is ordered only in the direction normal to the walls. 0.4
It is homogeneous in transverse,y) directions. Now with o
the introduction of furrows the film takes on additional order Co
in the x direction, as the plots in Fig. 4 show. As the furrow
deepens, the corner at the vertex sharpens. Fluid molecule 0.3} .
therefore pack tightly in two transverse dimensions with re- : : : : :
spect to the corner. The fluid consequently takes on a solid:
like order near the vertex. This is transmitted outward from
the corner by epitaxy. Similar order was observed in the FIG. 5. Mean pore density as a function of furrow depth for
study of Schoen and Dietrich for a hard-sphere fluid confinedeparations,=2.0 (O), 3.0 (@), and 4.0 ().

0 1 2 3 4
D
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between hard furrowed substrates ahd90° [see Fig. 6a) , Xits /2
of Ref.[38]]. XN =1 s/
The dependence of the normal strdss on the dihedral X
angled at fixed separatios,, and vice versa, can be under- yi+8,/2
stood qualitatively by imagining the film to be partitioned Vi (A1)
into segments by planes parallel with $he plane. Speaking s,/2
very roughly, we can expregs, as a weighted average over
the segments of,, for planar walls at a separation corre- Z/:Zi_zl(xi)
sponding to theneandistance between the substrate surfaces ' Az(x)
of that segment. Shallow furrows are spanned by a few seg-
ments, which involve few points on tianar normal-stress ~ Where
curve. The values of ,, at these few points add more or less AZ(X) = Zy(X) = Z4(X). A2)

constructively. On the other hand, deep furrows involve
many segments over a broad range of separations and t
corresponding planar,, values tend to cancel one another.
Hence, a¥® decreases over the range from 180° to 90°, the N N N
stress curve dampens toward the constant value of the bulk 7z —T] dxi,f in’J' dz Jexp(—U/kgT), (A3)
stresg see Fig. 2c)]. i=1Jo 0 0

A particularly noteworthy phenomenon is the strong, ap-
prox|mate|y linear, decrease 6&)( (| e., the increase in ten- where the Jacobian of the transformation defined in Eqs
sion of the film in thex direction relat|ve to the bulk phase (A1) is given by
with increasing depttb of the furrow at a fixed, relatively
small, separation. We have argued that this is due to an in-
crease in the order of the film in thedirection, and that it is
analogous to the increase in tension in théirection with
increasing distance betweeplanar (unfurrowed walls, From Eq.(A3) we obtain
which is associated with the completion of a new layer in the

film and a concomitant increase in order in theirection. (&ZN) H J ; J ; J . ( EX J &U)
X; yi Z

q’%e configuration integral can then be rewritten

J= L+S NH AzZ(xy). (A4)

Since the film is always homogeneous in thairection, 75, kaT 75,

variations inD influenceT,, much less than the other diag-

onal components. However, as pointed out in the discussion x exp(—U/kgT). (A5)
in Sec. V, variations of the structure of the film parallel with
the cross sectiofi.e., parallel with thex-z plang neverthe- We focus first on the casg,=L. Differentiation of the
less affectT, appreciably. expression fod in Eq. (A4) yields

Our results indicate the profound impact of coupling be-
tween molecular and nanoscopic scales on the thermophysi- 9 NJ

10 S| AZ' (%)
*Nk;(xk* )Az(x) (A6)

cal properties of geometrically constrained fluids, where the L Lrs/2 1
symmetry of the system is much reduced from that of the X
homogeneous fluid. We have explored the dependence 9vhereAz
T,, On only two (s, andD) of thefive (T, u, S, S,, D) or

six (if the x registry of the substrates is inclugettiermody-

namic state variables that characterize this simple model.
would expect other properties, such as the shear stress and

"=dAz/dx. From Fig. 1 it is clear that the ratio
Az'/Az depends on the domain &f Using the equations of
VVtehe planes of the substrate surfa¢sse Fig. 1, we have

the phase behavior, to be similarly influenced. Az _ XT8J2+5,5/4D,  —5,2=x=0 (A7)
AZ'(X) [X—SJ2—5,5,/4D,  OsXxss,/2.
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APPENDIX A: DIFFERENTIATION OF THE s AZ/(X)
CONFIGURATION INTEGRAL ZJ(X+ 3 Az(x;) ] (A9
Z(X;

To calculate the partial derivative @y in Eq. (18), we
transform to reduced dimensionlegsimed coordinates: The partial derivative ofb in Eq. (A8) can be expanded as
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IP(Xi,z) _d¢o(Z) +t9901(xi 1Zi)
oL oL oL
_ 9097 9@y 9% d¢1 9z
9z, oL ax; dL ' dz dL’ (A10)

where  ¢o(2)=¢51(2)+ e(2),  ei(x2)=01(x,2)

+¢P)(x,2), and[see Eqs(Al)]

X X+ S,/2
L L+s/2’

9z, Xi+s,/2 AzZ'(x;) (ALY)

9L L+sJ2 Az(x) ~

APPENDIX B: FORMULAS FOR THE FLUID-SUBSTRATE
FORCE

Here we derive formulas for the components of the mean
field force exerted by the substrates on fluid moleciyle

K (x,,z)=—0¢M/da;, where k=1,2, n=0,1, and «

—x z. We consider only the case=2 since the components
due to the lower substratd) can be expressed in terms of
those due to the upper substrat®). Differentiation of

©!(z) given in Eq.(5) with respect taz; yields

2 o 10
(s/2+D z,)

(Z)— —2meo’py =

7 ! B1
“\sj2+D-z] | (B1)

From the relatlon;o[”(z) e2l(—z), it follows that
b (z)=—t8(-z). (B2)

[2]

Differentiating ¢4~ with respect tax; andz;, we obtain

37Tep os,D 1.
R x,z)=—Ff—— E dz'z'
’ m=—o JO

” on

! ! 1 (S S X
+f0 dx' ¢’ (xi',z )E

dew<"u§
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3mepoS,D 1.
f[lzz](xiazi):L f dz'z’
’ 4 m=-» JO
! ATV Zi”
X fo dx'¢' (%" .z) 7
! NV Zi”
0

wherey’ =dy/dR, with R=x"?+Z2"?, is given by
231 o\ *? . a\®
32(R R |

From the symmetry restnctlonqs1 ](x 2)= <p1 ](x —2) and
oM (—x,2)=¢¥(x,2), we deduce the following relations:

(B4)

f[11,>1(xi ,Zi):f[lz)z(xi = Zi),

f[ll,z](xi Zi= _f[lz,z](xi = Zi),
(B5)

f[ll,(>]<(_xi 1Zi):fg_k)]((xi Zi),
[k]( XIIZI) f]_z(xn |)

The equalities in EqgB2) and (B5) can be used to express
the mean-field force due to the substrates at any pair) (

in the central period in terms of the force compon

=2l and f?1=f[21+ 12 at the point [x|,|z|) in the large
upper right quadrant We follow the procedure outlined in
Sec. IV for ¢[?l; that is, we store the force components on a
rectangular grid prior to the GCEMC run, and interpolate to
obtain the instantaneous off-grid values during the run.
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