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Correlation of stress and structure in a simple fluid confined to a pore with furrowed walls
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A Lennard-Jones~12,6! film confined between two furrowed walls was simulated by the grand canonical
ensemble Monte Carlo method. The walls are constructed by gouging triangular grooves in planar substrates
that are structureless on the molecular scale. The furrows are infinitely long in one transverse direction~y! and
of nanoscopic width (sx) and depth (D). The furrows in the two walls are maintained parallel and in register.
The diagonal components of the stress tensor (Taa , a5x,y,z) are computed as functions ofD and the
separation between the substrates (sz) at fixed temperature, chemical potential, andsx . The Taa for the film
between the furrowed walls are strongly shifted from their counterparts for the film between flat~i.e., planar!
walls. The shifts are rationalized in terms of the structure of the film, which becomes more ordered as the
furrows deepen and the packing of film molecules becomes more restricted in the two dimensions normal to the
y direction. The results demonstrate the profound impact of the coupling between molecular and nanoscopic
scales on the properties of geometrically constrained fluids.

PACS number~s!: 61.20.2p, 64.10.1h, 68.35.Rh, 68.45.Gd
th
o
so

ch
at
f
or
r
u

tri
n
a

ap
e

ne
f-
al
a
a

tin

a
’
a

or
ter-
al
m
se-

r-
mi-

ds
ll be
ch
d
u-
on-

e
-

like
the
er

id.
ess

di-
in
I. INTRODUCTION

Unless solid surfaces are treated with extreme care,
are typically rough, so that an adjacent fluid is exposed t
geometrically disordered substrate. The effect of such di
der on wetting phenomena was studied experimentally@1–4#
and theoretically@5–8# by coarse-grained approaches whi
average laterally over the height variation of the substr
Thus an understanding of thelocal microscopic structure o
fluids filling the grooves and covering the tips of such dis
dered substrates is still in its infancy. This dearth of info
mation has been alleviated by the development of techniq
for the fabrication of substrates with well defined geome
cal structures periodic in one transverse dimension. O
method utilizes the self-organization of vapor-deposited m
terials on crystalline substrates@9#. A recent example is the
study by Rauscheret al. @10# of the confinement of organic
molecules to one-dimensional trenches constructed by v
deposition of CaF2 on stepped~111! Si surfaces. A sequenc
of annealings produces a pattern of alternating CaF2 and CaF
stripes 1–16 nm wide. Adsorption of 3,10-dipropylperyle
~DDP!, followed by further annealing, results in DDP pre
erentially adsorbed on the CaF stripes. In nature one
encounters materials that are geometrically and chemic
ordered on the nanoscale. For instance, minerals of the p
gorskite and sepiolite group consist of stacks of alterna
tetrahedral and octahedral silicate sheets@11#.

Such structurally and chemically patterned substrates
envisioned to be useful in the field of ‘‘microfluidics,’
which is concerned with the controlled movement of sm
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quantities of valuable liquids across a substrate surface@12–
16#. By imprinting substrates with nanoscopic chemical
geometrical patterns, one can modify the wetting charac
istics of the underlying solid, thereby creating chemic
‘‘lanes,’’ say, along which a liquid can be transported fro
one region of the substrate to another, where it may sub
quently be analyzed or undergo chemical reactions@15,16#.
Thus it is conceivable that by imprinting a solid with diffe
ent types of nanoscopic structures one may fabricate che
cal chips or minute chemical factories@16#.

Eventual realization of the controlled transport of flui
on the nanoscale by means of patterned substrates wi
facilitated by fundamental studies of simple models for su
systems@17#. It will be especially important to understan
the phase behavior of such ‘‘dimensionally constrained’’ fl
ids. Indeed, a number of theoretical investigations were c
cerned with ‘‘simple’’ fluids~i.e., fluids comprising spheri-
cally symmetric molecules! adsorbed on chemically
patterned substrates@18–24# and in pores with chemically
patterned walls@25–32# ~also see Refs.@33,34# for recent
reviews!. Applying a density-functional technique to th
Lennard-Jones~LJ!~12,6! fluid confined between walls hav
ing a superimposed square-wave barrier, Chmielet al. @25#
found that pore condensation occurs in two stages: liquid
bridges form first in the narrow gaps between the tops of
opposing barriers, followed by condensation in the wid
gaps, so that the whole pore is eventually filled with liqu
This behavior is analogous to the two-stage filling proc
observed by Ro¨cken and Tarazona@26# and Röcken et al.
@27# in their lattice-gas@26# and density-functional@27# stud-
ies of adsorption of the LJ~12,6! fluid in a pore with a film-
substrate potential varying sinusoidally in one transverse
rection. Similar observations were made more recently
studies of the phase behavior of LJ~12,6! fluid confined to
6615 ©2000 The American Physical Society
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6616 PRE 62D. J. DIESTLER AND M. SCHOEN
slit pores with chemically striped walls@29–32#. By means
of grand canonical ensemble Monte Carlo~GCEMC! simu-
lations @29,30,32# and related mean-field lattice-gas mode
@30–32#, particular emphasis is put on elucidating the int
play between different length scales set by the range of fl
fluid interactions, confinement~i.e., width of the slit pore!
and chemical decoration of the substrates~i.e., relative
widths of the chemical stripes with which the substrates
endowed!.

In this paper we are concerned with the properties of fl
films constrained by walls possessing purely structural p
terns~as distinct from chemical patterns, which involve mo
than one chemical species! on the nanoscale. In an earlie
work @35# we employed the GCEMC method to simulate t
LJ~12,6! fluid between face-centered-cubic~100! walls, one
smooth on the atomic scale and the other scored with sq
grooves several atomic diameters wide. When the walls
in the appropriate lateral alignment, the film consists of flu
and solid portions in thermodynamic equilibrium~fluid-filled
grooves alternating with solid strips!. Epitaxial freezing is
induced by the templates of the strips between the groo
an effect first described in Refs.@36# and @37#. In the
grooves, however, the field due to the template is so w
that the film remains fluid there.

The current paper treats a LJ~12,6! fluid confined by sub-
strates that are structurally striped on the nanoscale,
smooth on theinfinitesimalscale. The substrate can be ima
ined to be constructed by gouging triangular grooves~fur-
rows! in an infinitesimally smooth planar surface~see Fig.
1!. In an earlier GCEMC study Schoen and Dietrich@38#
examined the entropy-driven packing of hard spheres in
groove of a furrowed hard substrate. It was shown that un
favorable conditions the furrow can induce a solidlike ord
of fourfold in-plane symmetry in the hard-sphere fluid@see
Fig. 6~a! in Ref. @38##. This observation was verified inde
pendently by Hendersonet al. @39# in a density-functional
calculation based on the Evans-Tarazona functional. M
recently Rejmeret al. @40# studied the filling of a single fur-
row ~wedge! by liquid. These authors employed an effecti
interface model, and focused on the meniscus of a~macro-

FIG. 1. Side view of a slit-pore with furrowed walls. Shadow
boxes display equations of planes of sides of ‘‘central’’ furrow
Subscripts 1 and 2 refer to lower and upper substrates, respect
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scopic! portion of fluid residing in the wedge. A similar ap
proach was used by Parryet al., who were concerned with
wetting of a single furrow ind52 @41# andd53 dimensions
@42#. Unlike Refs.@40–42# , the present work treats the flui
at themolecularscale. Further, in contrast to Refs.@38# and
@39#, here we take the intermolecular potentials to be c
tinuous functions of the coordinates. We are primarily int
ested in the effects on thermophysical properties of coup
between the nanoscopic scale of the furrows and the mol
lar scale of the fluid structure. To attempt to elucidate the
we employ the GCEMC method to compute diagonal co
ponents of the stress tensor as functions of substrate se
tion sz and dihedral angleu associated with the furrow~see
Fig. 1!.

The remainder of this paper is organized as follows.
Sec. II we describe the model system. Section III is devo
to the derivation of statistical thermodynamic expressions
stress-tensor components. In Sec. IV we describe detail
the computational methods. We present results in Sec
and conclude with a summary of our main findings in S
VI.

II. MODEL

Figure 1 displays a schematic of the model, which co
sists of a monatomic film constrained between two so
monatomic substrates that occupy the half spacessz/2,z
,` and 2sz/2.z.2`. The surface of each substrate
made up of plane segments perpendicular to thex-z plane,
and so arranged as to create furrows extending fromy5
2` to y5`. The substrates are therefore periodic in thex
direction, having a period ofsx . They are also assumed to b
infinite in thex direction. The dihedral angleu between the
sloping sides of a furrow is given in terms of the depthD of
the furrow by

u52 arctanS sx

2D D . ~1!

We assume the furrows in the two substrates remain par
in the y direction and in register in thex direction.

We take the potential energy to be expressible as a sum
LJ~12,6! interatomic potentials

u~r !54eF S s

r D 12

2S s

r D 6G ~2!

between pairs of fluid molecules, wherer is the distance
between the pair. For simplicity, we assume all pairs
characterized by the same attractive well depthe and effec-
tive diameters. To avoid complications that would atten
specification of the detailed molecular structure of the s
strate, we employ a mean-field approximation for the fil
substrate potential energy, which is derived by averaging
~original! fluid-substrate interactions over the positions of t
substrate atoms. Thus the mean-field potential energyF [2] of
a fluid molecule due to theupper substrate~designated by
the superscript 2! is given by

F [2]~x,z!5w0
[2]~z!1w1

[2]~x,z!, ~3!

where

.
ly.
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w0
[2]~z!5rsE

2`

`

dx8E
2`

`

dy8E
sz/21D

`

dz8u~ ur2r8u!,

~4!

w1
[2]~x,z!5rs (

m52`

` E
2`

`

dy8E
sz/2

sz/21D

dz8

3F E
sx(2m21)/2

sx[z81D~2m21)2sz/2]/2D
dx8u~ ur2r8u!

1E
2sx[z82D(2m11)2sz/2]/2D

sx(2m11)/2

dx8u~ ur2r8u!G ,
and rs is the density of substrate atoms. The positions
fluid molecules and substrate atoms arer and r8, respec-
tively. The contributionsw1

[2] and w0
[2] correspond to aver

ages over the ‘‘hills’’ between the furrows and over the
mainder of the substrate, respectively. Similar express
obtain for the potentialF [1] of a fluid molecule due to the
lower substrate~denoted by superscript 1!.

Taking the origin at the fluid molecule and transformi
to cylindrical coordinates, we can carry out the double in
gral in the first of Eqs.~4! to obtain

w0
[2]~z!5

2perss
3

3 F 2

15S s

s2/21D2zD
9

2S s

s2/21D2zD
3G .
~5!

The definite integral ony8 in the second of Eqs.~4! can also
be done explicitly. The result is

w1
[2]~x,z!5

3perss

2 (
m52`

` E
sz/2

sz/21D

dz8

3F E
sx(2m21)/2

sx[z81D(2m21)2sz/2]/2D
dx8c~x9,z9!

1E
2sx[z82D(2m11)2sz/2]/2D

sx(2m11)/2

dx8c~x9,z9!G ~6!

where

c~x9,z9!5
21

32S s2

x921z92D 11/2

2S s2

x921z92D 5/2

, ~7!

x95x2x8, andz95z2z8. Likewise, we can obtain the an
tiderivative ofc with respect tox9 in closed form, but since
the function ofz8 that results from evaluating it at the limit
is formidably complex, we instead choose to calculate
double integral in Eq.~6! numerically~see Sec. IV!. For this
purpose it is convenient to recastw1

[2] in dimensionless form
as

w1
[2]~x,z!5

3persssxD

4 (
m52`

` E
0

1

dz̃8z̃8F E
0

1

dx̃8c~x9,z9!

1E
0

1

dx̃8c~ x̂9,z9!G , ~8!

where
f

-
s

-

e

x95x2
sx

2
~ x̃8z̃812m21!,

z95z2Dz̃82
sz

2
, ~9!

x̂95x2
sx

2
~ x̃8z̃82 z̃812m11!

in terms of the dimensionless variablesx̃8 and z̃8.
Since the total mean-field potential energyF5F [1]

1F [2] is periodic in x, F need be calculated in only on
period, say the ‘‘central’’ one2sx/2,x,sx/2 ~see Fig. 1!.
Symmetry also dictates the following relations:F [1] (x,z)
5F [2] (x,2z) andF [k] (x,z)5F [k] (2x,z), wherek51 and
2. From these latter we conclude thatF at any point (x,z) in
the central period is given byF(x,z)5F [2] (uxu,uzu)
1F [2] (uxu,2uzu). We exploit this symmetry to simplify the
computation of the fluid-substrate potential energy, as
tailed in Sec. IV.

III. THERMOPHYSICAL PROPERTIES

A. Thermodynamics

From a thermodynamic perspective we take thesystemto
consist of the finite portion of the fluid bounded by the su
strate surfaces and by~imaginary! faces that lie in the pairs
of planesx56sx/2 andy56sy/2. The thermodynamic stat
can be specified by giving the absolute temperatureT,
chemical potentialm, and spatial dimensionssx , sy , andsz .
In terms of these variables reversible transformations of
system can be expressed in differential form as

dV52SdT2Ndm1FxdL1Fydsy1Fzdsz , ~10!

whereV is the grand potential,S is the entropy,N is the
number of film molecules, andL is an ancillary distance
whose roˆle is explained presently. The last three terms of E
~10! represent the mechanical work done by the syst
against forces applied to the faces. According to the assu
tions thus far introduced, no shear stresses act on the sys
The normal stressTzz is given by

Fz5Tzzsxsy5 lim
L→sx/2

S ]V

]sz
D

T,m,L,sy

, ~11!

wheresxsy is the cross-sectional area of the system in
x-y plane. Likewise the stress on the face pointing in thy
direction is

Fy5Tyysx~sz1D !5 lim
L→sx/2

S ]V

]sy
D

T,m,L,sz

, ~12!

where sx(sz1D) is the area of the face. The theoretic
analysis of the expansion of the system in thex direction is
complicated by the fact that the dimension of the system
which we wish to computeTxx coincides with one of the
variables (sx) that determines the dihedral angleu @see Eq.
~1!#. To circumvent this problem, we introduce the auxilia
distanceL ~see Fig. 1!. Thus we suppose that the face poin
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6618 PRE 62D. J. DIESTLER AND M. SCHOEN
ing in the x direction lies in the planex5L, where 0<L
<sx/2. Then we can writeTxx as

Fx5Txxsysz5 lim
L→sx/2

S ]V

]L D
T,m,sy ,sz

. ~13!

B. Statistical mechanics

The connection between macroscopic and molecular
els is through the relationship@43#

V52kBT ln J, ~14!

where the grand partition function is

J5 (
N50

`
exp~mN/kBT!

N!L3N
ZN . ~15!

In Eq. ~15!, kB is Boltzmann’s constant, andL is the thermal
de Broglie wavelength. The configuration integral is giv
by

ZN5)
i 51

N E
2sx/2

L

dxiE
2sy/2

sy/2

dyiE
z1(xi )

z2(xi )

dzi exp@2U/kBT#,

~16!

where the configurational energy is

U5
1

2 (
i 51

N

(
j 51Þ i

N

u~r i j !1(
i 51

N

F~xi ,zi !. ~17!

Because the substrate surfaces are not parallel with thex-y
plane, the limits on the integrations over thez coordinates in
the expression forZN depend on thex coordinates;z1(x) and
z2(x) are the equations of the planes of the lower and up
substrate surfaces, respectively~see Fig. 1!.

From Eqs.~11!–~15! we deduce the statistical thermod
namic formula for the generic diagonal component of
stress tensor

Taa52
kBT

JAa
(
N50

`
exp~mN/kBT!

N!L3N S ]ZN

]sa
D , ~18!

where sa stands for the dimension of the system in thea
direction, andAa for the area of the face pointing in thea
direction. The evaluation of]ZN /]sa is detailed in Appendix
A.

Now substituting into Eq.~18! the successive intermedia
expressions in Eqs.~A5!, ~A6!, ~A8!, ~A9!, ~A10!, and
~A11!, we obtain

Txx52
kBT

V F ^N&1K (
i 51

N S xi1
sx

2 DDz8~xi !

Dz~xi !
L G

1
1

2V K (
i 51

N

(
j 51Þ i

N
u8~r i j !

r i j
H xi j

2 1zi j FDz8~xi !

Dz~xi !
zi S xi1

sx

2 D
2

Dz8~xj !

Dz~xj !
zj S xj1

sx

2 D G J L 1
1

V K (
i 51

N
]w0

]zi
v-

er

e

3S xi1
sx

2 D zi

Dz8~xi !

Dz~xi !
L 1

1

V K (
i 51

N S xi1
sx

2 D
3F]w1

]xi
1

]w1

]zi
zi

Dz8~xi !

Dz~xi !
G L ~19!

where Dz8(xi)/Dz(xi) is given by Eq. ~A7!, and V
[sxsysz . The angular brackets in Eq.~19! signify the grand
canonical ensemble average, which is expressed for a ge
dynamical quantityG by

^G&5
1

J (
N50

`
exp~mN/kBT!

N!L3N E
ṼN

drN exp@2U/kBT#G~rN,N!

5 (
N50

` E
Ṽ8N

dr8Nf eq~r8N,N!G~r8N,N!, ~20!

where

f eq~rN,N!5
1

J
exp~BN2 ln N! !exp@2U~rN!/kBT#

~21!

is the grand canonical ensemble probability density, and

B5
m

kBT
2 lnS L3

Ṽ
D ~22!

is a dimensionless parameter which we introduce here
later convenience~see Sec. IV A!. Note that in the second
line of Eq. ~20! the integration is over reduced coordinat
r85r/V. In Eq. ~22!, Ṽ5sxsy(sz1D) is the volume of the
system~pore!. In Eq. ~19! the quantities]wn

[k] /]a i (n50,1,
k51,2, anda5x,z) are just the negatives of thea compo-
nents of the forcesf n,a

[k] (xi ,zi) exerted by the substrates o
fluid moleculei. Explicit expressions for these are present
in Appendix B.

By manipulations paralleling those used to reach Eq.~19!
we find

Tyy52
1

Az~sz1D ! F ^N&kBT2
1

2 K (
i 51

N

(
j 51Þ i

N u8~r i j !yi j
2

r i j
L G
~23!

and

Tzz52
kBT

Az
K (

i 51

N
1

Dz~xi !
L

1
1

2Az
K (

i 51

N

(
j 51Þ i

N
u8~r i j !zi j

r i j
Fzi2z1~xi !

Dz~xi !

2
zj2z1~xj !

Dz~xj !
G L 1

1

Az
K (

i 51

N
]F [2]

]zi

zi2z2~xi !

Dz~xi !

1
]F [1]

]zi

zi2z1~xi !

Dz~xi !
L , ~24!

whereAz[sxsy andz1 , z2, andDz are defined in Fig. 1 and
Appendix A, respectively.
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An alternative, much simpler, formula forTzz, which can be
derived by directly differentiatingZN given in Eq.~16! ~see
Ref. @29# for details!, is

Tzz5
1

2Az
K (

i 51

N F]F [2]

]zi
2

]F [1]

]zi
G L 5

1

2Az
K (

i 51

N

@ f z
[1]2 f z

[2] #L ,

~25!

where f z
[k]5 f 0,z

[k]1 f 1,z
[k] is the force on fluid moleculei due to

substratek. Equation~25! expresses the intuitive notion tha
the normal stress is just the mean force per unit area exe
on the fluid by the substrate.

C. Limits DÄ0 and eÄ0

In the limit D50 (u5180°), when the substrates a
planar, the following relations hold:z152sz/2, z25sz/2,
Dz5sz , Dz850, and]w1 /]x50. Substituting these limit-
ing relations into the expressions for the diagonal com
nents of the stress tensor given in Eqs.~19!, ~23!, and~24!,
we obtain

Taa52
^N&kBT

V
1

1

2V K (
i 51

N

(
j 51Þ i

N u8~r i j !a i j
2

r i j
L , a5x,y

~26!

Tzz52
^N&kBT

V
1

1

2V K (
i 51

N

(
j 51Þ i

N u8~r i j !zi j
2

r i j
L

2
1

V K (
i 51

N F f z
[2]~xi ,zi !S zi2

sz

2 D
1 f z

[1]~xi ,zi !S zi1
sz

2 D G L .

These limiting formulas agree exactly with expressions p
viously derived for a slit–pore with planar walls~see Eqs.
~26!–~32! in Ref. @29# for the special casee f w[e f s[e f f).

Another limiting case is the one wheree[0 correspond-
ing to the ideal-gas limit, in which intermolecular intera
tions become negligible andTaa should reduce to

Taa52
^N&kBT

Ṽ
, ~27!

wherea5x,y,z. AlthoughTyy given by Eq.~23! manifestly
satisfies Eq.~27!, it is hardly clear thatTxx andTzz do so. We
therefore investigate the particular casea[x. In the limit
e50, U50, and the expression forTxx given in Eq. ~19!
becomes

Txx52
kBT

V F ^N&1K (
i 51

N S xi1
sx

2 DDz8~xi !

Dz~xi !
L G . ~28!

Using Eq.~20!, we can write
ed

-

-

K (
i 51

N S xi1
sx

2 DDz8~xi !

Dz~xi !
L 5

1

J (
N50

`
exp~mN/kBT!ṼN

N!L3N

3F 1

Ṽ
(
k51

N E
ṼN

drk

3S xk1
sx

2 DDz8~xk!

Dz~xk!
G . ~29!

By means of Eqs.~A2! and~A7! the configuration integral in
Eq. ~29! can be evaluated explicitly:

E
ṼN

drkS xk1
sx

2 DDz8~xk!

Dz~xk!
52Dsxsy . ~30!

Substitution of Eq.~30! into Eq. ~29! yields

K (
i 51

N S xi1
sx

2 DDz8~xi !

Dz~xi !
L 52

Dsxsy^N&

Ṽ
. ~31!

Finally, combining Eqs.~28! and ~31!, we reach Eq.~27!,
with a[x. The demonstration forTzz proceeds along a simi
lar line.

IV. COMPUTATIONAL METHODS

A. Monte Carlo simulations in the grand canonical ensemble

To evaluate the ensemble averages in the formulas
Taa , we employ the GCEMC algorithm originally propose
by Adams@44# ~also see Ref.@45#!, which consists of two
consecutive sequences. In the first of these we select a
molecule, say i, from a given configuration rm

Nk

5$r1m ,r2m , . . . ,rNkm% containing Nk molecules, and dis-
place it at random according to

r in5r im1d~122j!, ~32!

wherer im and r in are the molecule’s old and new position
respectively,15(1,1,1), d is half the side length of a sma
cube centered onr im , andj is a vector whose three compo
nents are~pseudo! random numbers distributed uniformly o
the interval@0,1#. The probability with which the displace
ment is realized is governed byf eq(r

N,N) defined in Eq.
~20!, and must satisfy theprinciple of detailed balance. The
latter is obeyed if the displacement is carried out as a M
kov process@45#. The displacement must then be accep
with probability

P15min@1, exp~2DUnm /kBT!#, ~33!

whereDUnm5U(rn
Nk)2U(rm

Nk) is the change in configura
tional energy associated with the processr im→r in . During a
run the magnitude ofd is adjusted such that roughly 40
60 % of all attempted displacements are accepted. The
placement sequence concludes once allNk molecules have
been considered consecutively. SinceNk remains fixed, this
part of the GCEMC algorithm is equivalent to the classic
Metropolis algorithm describing stochastic diffusion in co
figuration space@46# ~see Ref.@47# for a historically interest-
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ing discussion between M. N. Rosenbluth and J. G. Ki
wood concerning the correct implementation of t
Metropolis algorithm!.

In the second sequence of the GCEMC algorithm an
tempt is made to alter the number of fluid molecules acco
ing to Nn5Nm61. The principle of detailed balanceis
again satisfied by carrying out the ‘‘creation’’ or ‘‘destru
tion’’ of a fluid molecule as a Markov process. Attempts
create and destroy fluid molecules are realized with eq
probability. It can then be shown@45# that the change in the
number of fluid molecules must be accepted with probabi

P25min@1,exp~r 6!#, ~34!

where

exp~r 6!5
f eq~rn

Nn ,Nn!

f eq~rm
Nm ,Nm!

,

r 15B2 ln Nn2
Unm

kBT
, ~35!

r 252B1 ln Nm1
Unm

kBT
,

where ‘‘1 ’’ and ‘‘ 2 ’’ refer to creation and destruction, re
spectively, andDUnm5U(rn

Nn)2U(rm
Nm) because old and

new ~trial! configurations differ by one molecule. The pro
ability of creation and destruction attempts is dictated so
by the thermodynamic state of the fluid, and cannot be
justed as for displacement attempts. Employing sca
particle theory, Allen determined the threshold ofP2 at
which the inefficiency of creation-destruction attemp
causes the GCEMC algorithm to break down@48#. For the
present thermodynamic state~see below!, about 531023 of
all creation-destruction attempts are successful accordin
Eq. ~34!, which exceeds the minimum value of 1024 given
by Allen @48# by more than an order of magnitude. Th
creation-destruction sequence is repeatedNk

init times, where
Nk

init is the number of fluid molecules present in the syst
when the creation-destruction sequence begins. The co
nation ofNk displacements andNk

init creation-destruction at
tempts constitutes a ‘‘Monte Carlo cycle.’’

In the implementation of this algorithm a subtle comp
cation arises because one is generally restricted to ra
small systems on account of limited storage and comp
tional speed. This implies that long-range intermolecular
teractions such as the LJ~12,6! must be neglected during th
simulation. Disregarding these interactions poses no prob
to the calculation ofDUnm during the displacement se
quence, since their contribution is small and cancels ne
exactly. However, this is not so for the creation-destruct
sequence because of the shift in density of61/Ṽ between
old and new trial configurations. Nevertheless, the contri
tion of long-range interactions toDUnm is still small. Thus
one may resort to a mean-field treatment and estimate
long-range correction toDUnm analytically @36#. Unfortu-
nately, this approximation breaks down near the critical po
of the confined fluid, where a mean-field treatment becom
inadequate@49#. To avoid these complications as well as t
-
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somewhat cumbrous expressions for corrections@36#, we re-
place the LJ~12,6! potential@see Eq.~2!# in Eq. ~17! by its
shifted-force counterpart@50#

u~r !→us f~r !

5H u~r !2u~r c!1du~r !/drur 5r c
~r c2r !, r<r c

0, r .r c

~36!

which vanishes identically for all intermolecular distanc
exceeding the cutoffr c52.5s. The shifted-force potential is
explicitly short range, and consequently does not requ
long-range corrections during the creation-destruction
quence of the GCEMC algorithm. However, we note in pa
ing that the phase diagram of a fluid, in which intermolecu
interactions are governed byus f , ineluctably depends onr c .

B. Evaluation of fluid-substrate interaction potential

According to the discussion at the end of Sec. II, we co
putew [2] numerically at the nodes of a rectangular grid pr
to the GCEMC run, and evaluateF by interpolation during
the run. Following the constraints of symmetry summariz
below Eq. ~9!, we evaluatew [2] on a grid that covers the
upper right quadrant of thex-z plane defined by the set o
points $(x,z)u0,x,sx/2,0,z,sz/21D% where, of course,
w [2][` if for a given x, z>z2(x) ~see Fig. 1!. The double
integral in Eq.~8! is accomplished by repeated application
Simpson’s rule. A mesh size of 1.2531022s in both dimen-
sions is fine enough to yieldw [2] with a precision of about
0.01%. Tests also reveal that terms in the sum in Eq.~8! are
negligible for umu>2.

During the GCEMC runw [2] (xi ,zi), corresponding to the
instantaneous position (xi ,zi) of fluid molecule i, is found
through bilinear interpolation. For this purpose we introdu
dimensionless coordinates

x̃i5$@2xi2~2nx21!#dx%
1

2dx
,

~37!

z̃i5$@2zi2~2nz21!#dz%
1

2dz
,

where $naunaPN,na,a i /da,na11% (a5x,z) and dx
5dz51.2531022s is the mesh size. Defining weighting co
efficients

w225~12 x̃i !~12 z̃i !,

w215~12 x̃i !~11 z̃i !,
~38!

w125~11 x̃i !~12 z̃i !,

w115~11 x̃i !~11 z̃i !,

we can express the interpolated value ofw [2] as
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w [2]~xi ,zi !.
1

4
@w22F [2]@nxdx ,nzdz#

1w21F [2]@nxdx ,~nz11!dz#

1w12F [2]@~nx11!dx ,nzdz#

1w11F [2]@~nx11!dx ,~nz11!dz##.

~39!

Applying the bilinear interpolation method to the limitin
case of planar substrates@wherew [2] (x,z) can be evaluated
by the explicit expression forw0

[2] in Eq. ~5!#, we verified
that the interpolated value ofw [2] (x,z) at any point in the
x-z plane deviates by less than 0.1% from the value ca
lated from Eq.~5!.

V. RESULTS AND DISCUSSION

In the remainder of this paper we express all quantitie
the customary dimensionless~i.e., ‘‘reduced’’! units. That is,
length, energy, stress, and temperature are expressed in
of s, e, e/s3, and e/kB , respectively. For all thermody
namic states of the system considered,T51.0 and m5
29.0; the corresponding bulk density and pressure arenb
50.709 andPb50.979, respectively. The width of the fur
row is fixed atsx58.0; the length of the furrow is chosen i
the range 8.0<sy<40.0. The cutoff radius is set tor c
52.5. The depth of the furrowD ~or equivalently the dihe-
dral angleu) and the separationsz were varied more or les
systematically as described below. The results are ba
upon runs of 53104 Monte Carlo cycles; each run is starte
from a random configuration of fluid molecules.

To demonstrate the reliability of the GCEMC procedu
we compare the components ofTzz computed from the dis-
similar expressions given in Eqs.~24! and ~25!. The entries
in Table I for a number of arbitrarily selected cases agree
better than 2%, supporting the internal consistency of
simulations.

Figure 2 displays plots ofTaa (a5x,y,z) versussz for

TABLE I. Normal component of the stress tensorTzz from ex-
pressions given in Eqs.~24! and ~25! for various furrow depthsD
and substrate separationssz .

D sz Tzz @Eq. ~24!# Tzz @Eq. ~25!#

0.00 2.20 20.232 20.234
0.00 2.40 22.479 22.515
0.00 4.00 20.659 20.657
0.00 4.60 21.146 21.163
0.35 2.20 21.760 21.771
0.35 2.40 21.513 21.535
0.35 3.40 21.155 21.144
1.07 2.20 21.258 21.274
1.07 2.60 21.096 21.082
1.07 3.00 21.002 20.993
1.07 5.00 20.986 20.980
3.36 2.25 21.059 21.048
3.36 2.75 20.984 20.969
-

n

nits

ed

,

to
e

several fixed values ofu. For the caseu5180°, Tzz versus
sz is the normal-stress curve for the planar, smooth-wall
pore;Txx andTyy are related to the interfacial tensiong by
g5@(Txx1Tyy)/22Tzz#. The oscillations correspond to th
abrupt appearance of successive layers in the film assz in-
creases@45#. For the particular thermodynamic state und
consideration~see above!, at sz52.0 the film consists of a
single layer parallel to the substrate surfaces. The laye
homogeneous and isotropic in transverse directions~i.e., the
x and y directions parallel with the substrate surfaces! and
inhomogeneous in the normal direction~i.e., thez direction!.
The film molecules are close packed in the layer, which
snugly between the substrates. Indeed the film is unde
slight tension in thez direction, that isTzz.0 and an out-
ward forceTzzsxsy must be applied to the substrates in ord
to maintain the separation fixed atsz52.0. Now, assz in-
creases from 2.0, more fluid molecules enter the pore
disrupt the close packing of the monolayer. Consequen
Tzz drops precipitously, reaching a minimum aboutsz52.5
@see Figs. 2~c! and 2~d!#. As sz continues to increase, how
ever, the original monolayer begins to split, resulting eve
tually in two close-packed layers atsz53.0, whereTzz
reaches a relative maximum. The completion of the n
layer, with the attendant increase in order~with respect to the
intermediate state of the partially formed layer!, drives the
system toward a state of tension~with respect to the bulk
phase! in the z direction. This cycle repeats assz increases
from 3.0 to 4.0, where three layers of fluid are present un
tension~relative to the bulk phase! in the z direction.

We now adapt the above ideas relating structure and
sion in order to rationalize the dependence ofTaa on D with
sz fixed, which is shown in Fig. 3. We considerTzz first. At
D50.0 (u5180°), which corresponds to the planar lim
the values ofTzz are just the relative maxima atsz52.0, 3.0,
and 4.0, respectively@see Figs. 2~c! and 2~d!#, where one-,
two-, and three-layer films are present. We focus now on
monolayer fluid. AsD increases, that is as the furrow dee
ens, the original monolayer is disrupted, which results in
sharp decline inTzz, analogous to that observed as the d
tance sz between the planar substrates increases fromsz
52.0, as described above. However, whenD increases, the
effective distanced between the substrate surfaces increa
nonuniformly from the edges of the furrow atx56sx/2 to
the center atx50. That is, at the edgesde5sz , whereas at
the centerdc5sz12D. Hence the degree of disorder varie
over the furrow, being least at the edges and greatest nea
middle.

At u5170°, Tzz has reached a~relative! minimum. From
Eq. ~1! we computeD50.35, so thatdc.2.7. Judging from
the above discussion of the planar limit, one might surm
that the original monolayer should be splitting into two la
ers over the central region of the furrow. Another fact
comes into play, however, to enhance the ordering of
film near the vertex of the furrow: the substrate surfaces n
intersect in a line~vertex! to create a ‘‘corner’’ with respec
to which atoms can order themselves in the direction para
with the substrate surface and normal to they axis. As a
measure of the order of the fluid we take the local dens
which can be expressed

r~x,z!5
^N~x,z!&
DxDzsy

, ~40!
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FIG. 2. Diagonal components (Taa , a5x,y,z) of the stress tensor as functions of separationsz for several furrow depthsD. Panels~a!,
~b!, and~c!: (j), D50.00 (u5180°); (s), D51.07 (u5150°); (d), D53.36 (u5100°). Panel~d!: (j), D50.00 (u5180°); (h),
D50.35 (u5170°). The solid horizontal line represents2Pb520.979.
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where^N(x,z)& stands for the ensemble-average numbe
fluid molecules that lie within a square prism of dimensio
Dx3Dz3sy centered on the node of the grid at the po
(x,z). The plot ofr in Fig. 4~b! indicates that the monolaye
film has indeed bifurcated into quite sharp layers near
center of the pore. These merge into a single layer near
edges. As a result the normal stress drops to an interme
value between the limiting~planar! values of 0.25 atsz
52.0 and21.8 atsz52.7.

As u continues to decrease, the furrow becomes dee
and the corner sharper. The consequence is an increas
ordered fluid in both transverse dimensions. The furrow
be viewed as being spanned in thez direction by segments o
fluid containing integral numbers of layers, alternating w
segments ‘‘in transit’’~that is, segments in which new laye
are coming into being!. Therefore,Tzz oscillates asD in-
creases to about 1.66 (u5135°). For largerD, the broad
midsection of the pore is dominated by large~asymptotic!
separations, and henceTzz is near the bulk stress. The stru
ture of Tzz versusD for the casessz53.0 and 4.0@see Fig.
3~c!# may be similarly rationalized. As expected, the oscil
tions become muted assz increases andTzz approaches the
asymptotic~largesz) value more rapidly.

The dependence ofTzz on sz for fixed D is shown in
greater detail in Fig. 2~d!. The normal stress curve for th
furrowed substrate appears to be shifted and dampened
f
s
t

e
he
ate

er
gly
n

-

ith

respect to the limiting curve for the planar substrate. This
be explained crudely as follows. The segments of the fi
that span the pore in thez direction consist of different num
bers of layers in the process of forming. Roughly speaki
the normal stress can be expressed as a weighted ave
over the segments of the limiting stress for planar substr
at a separation that corresponds to the distance betwee
sloping substrate surfaces for that segment. IfD is not too far
from 0.0 (u5180°), then the average involves only a fe
points on the limiting stress curve, which are separated fr
one another by fixed distances assz changes. Thus, we ex
pect the average to have the same period as the limi
curve, but also to be dampened through partial cancellat
The plots in Fig. 2~d! bear this out. AsD becomes larger, the
average involves a larger number of segments and a co
spondingly larger number of points on the limiting curve.
sufficiently deep furrow, say,D53.37 (u'100°) @see Fig.
2~c!#, results in essentially complete cancellation.

We turn now to an examination of the dependence ofTxx
on D for fixed sz . For the casesz52.0, Fig. 3~a! shows that
the film tends more or less linearly with increasingD toward
a state of tension in thex-direction. The plots of local density
in Fig. 4 suggest that the film becomes more ordered in b
the x and z directions asD increases. Further evidence th
order in the film increases as the furrow deepens is provi
by a plot of mean density
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n5
1

Dsx1sxsz
F E

2sx/2

0

dxE
z1(x)

z2(x)

dzr~x,z!

1E
0

sx/2

dxE
z1(x)

z2(x)

dzr~x,z!G
5

^N&

Ṽ
~41!

FIG. 3. Diagonal components (Taa , a5x,y,z) of the stress
tensor as functions of furrow depthD for several substrate separ
tions sz52.0 (s), 3.0 (d), and 4.0 (h). Solid horizontal line
represents2Pb520.979.
as a function ofD ~Fig. 5!. That n increases monotonically
with D indicates that the efficiency of packing of fluid mo
ecules increases accordingly. Further, as one would exp
both the amount of increase inn and rate of increase ofn
~i.e., dn/dD) are smaller the greatersz is. Whensz52.0 the
film is forced to be monolayer near the edges. As the furr
deepens and the corner sharpens, the order in the layer
est the substrate surface~i.e., the contact layer! increases in
the direction parallel with the substrate surface and with
x-z plane. This increase in order is conferred on thex direc-
tion through a ‘‘template effect.’’ That is, the contact lay
provides a template to which the next layer conforms. T
epitaxial effect persists for a few layers. Thus the film pr
ceeds toward a condition of higher tension~relative to the
bulk phase! in the x direction, for the same reason that th
film between planar substrates tends to a state of higher
sion in thez direction as a new layer is completed and t
order increases to a ‘‘local’’ maximum. Likewise, with in
creasingsz the effect just described is muted@see Fig. 3~a!#.
As sz increases, the fraction of thex directed face that is
covered by the disordered asymptotic~large sz) region in-
creases.

The dependence ofTyy on D at fixed sz is markedly
weaker than that ofTxx or Tzz on D at fixed sz @see Fig.
3~b!#. The reason is thatTyy is associated with expansio
~compression! in they direction, in which the degree of orde
does not change asD or sz is altered. Nevertheless,Tyy de-
pends on structural variations of the fluid in thex and z
directions~i.e., variations parallel with the cross section
the pore!. The caseD50.0 illustrates this clearly. As the
plots in Fig. 2~b! show,Tyy oscillates with increasingsz , in
correspondence with the appearance of successive laye
fluid, as described in connection with thesz dependence of
Tzz. The variations ofTyy with sz are strongest in the vicin
ity of D50.0. WhenD is sufficiently small that the cros
section of the pore is dominated by the asymptotic~largesz)
regime, thenTyy approaches the bulk stress. Again, t
largersz is, the weaker is the dependence ofTyy on D @Fig.
2~b!#.

VI. CONCLUSIONS

The results presented in Sec. V demonstrate that the d
onal components of the stress tensor~i.e., the normal stress
Tzz and the interfacial tensionTxx and Tyy) for a LJ~12,6!-
type fluid ~see Sec. IV A! constrained between smooth fu
rowed walls are strongly altered from their counterparts
the fluid between flat~planar! smooth walls. Note that by
‘‘smooth’’ we mean that the walls lack structure on the m
lecular scale, which is a reasonable approximation in c
fluid molecules are much larger than substrate atoms.
furrowed walls, however, possess nanoscopic structure in
normal ~z! direction and in one transverse~x! direction. The
principal focus of our investigation is the effect of couplin
between molecular and nanoscopic structures on the the
physical properties of the film, and the smooth-wall appro
mation captures the effect.

The essential reason for the disparity between stress c
ponents of the film between furrowed and flat walls is t
increase of order engendered by the confinement of the fl
molecules to the furrows, which constrain the packing
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FIG. 4. Local densityr(x,z) for several furrow depths:~a! D50.00 (u5180°), ~b! D50.35 (u5170°), ~c! D51.07 (u5150°), ~d!
D51.87 (u5130°), and~e! D54.00 (u590°).
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molecules in two dimensions, rather than in just one dim
sion, as for flat walls. A fluid molecule between smooth p
nar walls is subject to an ‘‘external’’ potential field that d
pends only on the distance~z! of the molecule from the
substrates. As a result, the film orders itself in layers para
with the walls, in a fashion analogous to the ordering
~spherical! molecules in the homogeneous fluid in spheri
shells about a reference molecule. That is, the fluid betw
flat walls is ordered only in the direction normal to the wal
It is homogeneous in transverse (x,y) directions. Now with
the introduction of furrows the film takes on additional ord
in the x direction, as the plots in Fig. 4 show. As the furro
deepens, the corner at the vertex sharpens. Fluid molec
therefore pack tightly in two transverse dimensions with
spect to the corner. The fluid consequently takes on a so
like order near the vertex. This is transmitted outward fro
the corner by epitaxy. Similar order was observed in
study of Schoen and Dietrich for a hard-sphere fluid confin
-
-
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FIG. 5. Mean pore densityn as a function of furrow depth for
separationssz52.0 (s), 3.0 (d), and 4.0 (h).
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between hard furrowed substrates andu590° @see Fig. 6~a!
of Ref. @38##.

The dependence of the normal stressTzz on the dihedral
angleu at fixed separationsz , and vice versa, can be unde
stood qualitatively by imagining the film to be partitione
into segments by planes parallel with they-z plane. Speaking
very roughly, we can expressTzz as a weighted average ove
the segments ofTzz for planar walls at a separation corr
sponding to themeandistance between the substrate surfa
of that segment. Shallow furrows are spanned by a few s
ments, which involve few points on theplanar normal-stress
curve. The values ofTzz at these few points add more or le
constructively. On the other hand, deep furrows invo
many segments over a broad range of separations and
corresponding planarTzz values tend to cancel one anothe
Hence, asu decreases over the range from 180° to 90°,
stress curve dampens toward the constant value of the
stress@see Fig. 2~c!#.

A particularly noteworthy phenomenon is the strong, a
proximately linear, decrease ofTxx ~i.e., the increase in ten
sion of the film in thex direction relative to the bulk phase!
with increasing depthD of the furrow at a fixed, relatively
small, separation. We have argued that this is due to an
crease in the order of the film in thex direction, and that it is
analogous to the increase in tension in thez direction with
increasing distance betweenplanar ~unfurrowed! walls,
which is associated with the completion of a new layer in
film and a concomitant increase in order in thez direction.
Since the film is always homogeneous in they direction,
variations inD influenceTyy much less than the other diag
onal components. However, as pointed out in the discus
in Sec. V, variations of the structure of the film parallel wi
the cross section~i.e., parallel with thex-z plane! neverthe-
less affectTyy appreciably.

Our results indicate the profound impact of coupling b
tween molecular and nanoscopic scales on the thermoph
cal properties of geometrically constrained fluids, where
symmetry of the system is much reduced from that of
homogeneous fluid. We have explored the dependenc
Taa on only two (sz andD) of thefive (T, m, sx , sz , D) or
six ~if the x registry of the substrates is included! thermody-
namic state variables that characterize this simple model.
would expect other properties, such as the shear stress
the phase behavior, to be similarly influenced.
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APPENDIX A: DIFFERENTIATION OF THE
CONFIGURATION INTEGRAL

To calculate the partial derivative ofZN in Eq. ~18!, we
transform to reduced dimensionless~primed! coordinates:
s
g-

the
.
e
lk

-

n-

e

n

-
si-
e
e
of

e
nd

e-
n

i-
-

xi85
xi1sx/2

L1sx/2
,

yi85
yi1sy/2

sy/2
, ~A1!

zi85
zi2z1~xi !

Dz~xi !
,

where

Dz~x!5z2~x!2z1~x!. ~A2!

The configuration integral can then be rewritten

ZN5)
i 51

N E
0

1

dxi8E
0

1

dyi8E
0

1

dzi8J exp~2U/kBT!, ~A3!

where the Jacobian of the transformation defined in E
~A1! is given by

J5S L1
sx

2 D N

sy
N)

k51

N

Dz~xk!. ~A4!

From Eq.~A3! we obtain

S ]ZN

]sa
D5)

i 51

N E
0

1

dxi8E
0

1

dyi8E
0

1

dzi8S ]J

]sa
2

J

kBT

]U

]sa
D

3exp~2U/kBT!. ~A5!

We focus first on the casesa5L. Differentiation of the
expression forJ in Eq. ~A4! yields

]J

]L
5

NJ

L1sx/2
F11

1

N (
k51

N S xk1
sx

2 DDz8~xk!

Dz~xk!
G , ~A6!

whereDz8[dDz/dx. From Fig. 1 it is clear that the ratio
Dz8/Dz depends on the domain ofx. Using the equations o
the planes of the substrate surfaces~see Fig. 1!, we have

Dz~x!

Dz8~x!
5H x1sx/21sxsz/4D, 2sx/2<x<0

x2sx/22sxsz/4D, 0<x<sx/2.
~A7!

From Eq.~17!, we obtain

]U

]L
5

1

2 (
i 51

N

(
j 51Þ i

N

u8~r i j !
]r i j

]L
1(

i 51

N
]F~xi ,zi !

]L
, ~A8!

where u8(r )[du(r )/dr. A long, painful sequence of ma
nipulations eventually results in

]r i j

]L
5

1

r i j ~L1sx/2! H xi j
2 1zi j Fzi S xi1

sx

2 DDz8~xi !

Dz~xi !
2

zj S xj1
sx

2 DDz8~xj !

Dz~xj !
G J . ~A9!

The partial derivative ofF in Eq. ~A8! can be expanded a
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]F~xi ,zi !

]L
5

]w0~zi !

]L
1

]w1~xi ,zi !

]L

5
]w0

]zi

]zi

]L
1

]w1

]xi

]xi

]L
1

]w1

]zi

]zi

]L
, ~A10!

where w0(z)[w0
[1] (z)1w0

[2] (z), w1(x,z)[w1
[1] (x,z)

1w1
[2] (x,z), and@see Eqs.~A1!#

]xi

]L
5

xi1sx/2

L1sx/2
,

~A11!
]zi

]L
5

xi1sx/2

L1sx/2

Dz8~xi !

Dz~xi !
zi .

APPENDIX B: FORMULAS FOR THE FLUID-SUBSTRATE
FORCE

Here we derive formulas for the components of the me
field force exerted by the substrates on fluid moleculei,
f n,a

[k] (xi ,zi)52]wn
[k] /]a i , where k51,2, n50,1, and a

5x,z. We consider only the casek52 since the component
due to the lower substrate~1! can be expressed in terms
those due to the upper substrate~2!. Differentiation of
w0

[2] (zi) given in Eq.~5! with respect tozi yields

f 0,z
[2] (zi)522pes2rsF2

5 S s

sz/21D2zi
D 10

2S s

sz/21D2zi
D 4G . ~B1!

From the relationw0
[1] (zi)5w0

[2] (2zi), it follows that

f 0,z
[1]~zi !52 f 0,z

[2]~2zi !. ~B2!

Differentiatingw1
[2] with respect toxi andzi , we obtain

f 1,x
[2]~xi ,zi !5

3persssxD

4 (
m52`

` E
0

1

dz̃8z̃8

3F E
0

1

dx̃8c8~xi9 ,zi9!
xi9

R
1E

0

1

dx̃8c8~ x̂i9 ,zi9!
x̂i9

R G ,
J

o

ys

.

os

J.
-

f 1,z
[2]~xi ,zi !5

3persssxD

4 (
m52`

` E
0

1

dz̃8z̃8

3F E
0

1

dx̃8c8~xi9 ,zi9!
zi9

R

1E
0

1

dx̃8c8~ x̂i9 ,zi9!
zi9

RG , ~B3!

wherec85dc/dR, with R5Ax921z92, is given by

c852
1

s F231

32 S s

RD 12

25S s

RD 6G . ~B4!

From the symmetry restrictionsw1
[1] (x,z)5w1

[2] (x,2z) and
w1

[k] (2x,z)5w1
[k] (x,z), we deduce the following relations:

f 1,x
[1]~xi ,zi !5 f 1,x

[2]~xi ,2zi !,

f 1,z
[1]~xi ,zi52 f 1,z

[2]~xi ,2zi !,
~B5!

f 1,x
[k]~2xi ,zi !5 f 1,x

[k]~xi ,zi !,

f 1,z
[k]~2xi ,zi !5 f 1,z

[k]~xi ,zi !.

The equalities in Eqs.~B2! and ~B5! can be used to expres
the mean-field force due to the substrates at any point (x,z)
in the central period in terms of the force componentsf x

[2]

[ f 1,x
[2] and f z

[2]5 f 0,z
[2]1 f 1,z

[2] at the point (uxu,uzu) in the large
upper right quadrant. We follow the procedure outlined
Sec. IV forw [2] ; that is, we store the force components on
rectangular grid prior to the GCEMC run, and interpolate
obtain the instantaneous off-grid values during the run.
:
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